Α neural network based prediction method for troposheric ducting over the Hellenic region
نویسنده
چکیده
-The prediction of the tropospheric ducting conditions plays an important role in radio wave propagation. The scope of this work is to predict the tropospheric ducting characteristics over the Hellenic region by means of Artificial Neural Networks using data obtained from radio-balloon observations at Hellenicon Airport. It is proved that the tropospheric ducting manifestation can be predicted very accurately. On the other hand the low-altitude duct characteristics are very accurately predicted in all cases, whereas the characteristics of the high-altitude ones are marginally predicted. This can be due to the fact that the frequency of manifestation of the second ones is low.
منابع مشابه
Neural Network Prediction of Warm Deformation Flow Curves in Ferrite+ Cementite Region
Many efforts have been made to model the the hot deformation (dynamic recrystallization) flow curves of different materials. Phenomenological constitutive models, physical-based constitutive models and artificial neural network (ANN) models are the main methods used for this purpose. However, there is no report on the modeling of warm deformation (dynamic spheroidization) flow curves of any kin...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کامل